Publications & Posters

Diagnosis Of Ischemic Stroke Using Circulating Levels Of Brain-specific Proteins Measured Via High-sensitivity Digital Elisa

BRAIN RESEARCH

O’Connell GC, Alder ML, Smothers CG, Still CH, Webel AR and Moore SM

Brain Res. 2020 Apr 27:146861

DOI: https://doi.org/10.1016/j.brainres.2020.146861

Abstract

Limited lower detection ranges associated with traditional immunoassay techniques have prevented the use of brain-specific proteins as blood biomarkers of stroke in the acute phase of care, as these proteins are often only present in circulation at low concentrations. Digital ELISA is a newly developed technique with allows for quantification of proteins in biofluids with up to 1000 times greater sensitivity than conventional ELISA techniques. The purpose of this study was to determine whether the extended lower limits of detection associated with digital ELISA could enable the use of brain-specific proteins as blood biomarkers of ischemic stroke during triage. Blood was sampled from ischemic stroke patients (n = 14) at emergency department admission, as well as from neurologically normal controls matched in terms of risk factors for cardiovascular disease (n = 33). Plasma levels of two brain-specific axonal proteins, neurofilament light chain (NfL) and tau, were measured via digital ELISA, and receiver-operating characteristic analysis was used to determine their ability to discriminate between groups. Plasma levels of NfL and tau were both significantly elevated in stroke patients versus controls, and could respectively discriminate between groups with 92.9% sensitivity / 84.9% specificity, and 85.7% sensitivity / 54.6% specificity. Furthermore, adjustment of measured NfL and Tau levels according to the lower-limits of detection associated with commercially-available conventional ELISA assays resulted in a dramatic and statistically significant decrease in diagnostic performance. Collectively, our results suggest that the increased analytical sensitivity of digital ELISA could enable the use of brain-specific proteins as blood biomarkers of ischemic stroke during triage.