Utility of plasma Neurofilament light as a diagnostic and prognostic biomarker of the postural instability gait disorder motor subtype in early Parkinson's disease

Molecular Neurodegeneration
|

Ng ASL, Tan YJ, Yong ACW, Saffari SE, Lu Z, Ng EY, Ng SYE, Chia NSY, Choi X, Heng D, Neo S, Xu Z, Keong NCH, Tay KY, Au WL, Tan LCS and Tan EK

Mol Neurodegener. 2020; 15: 33.

DOI:  10.1186/s13024-020-00385-5

Abstract

Background

The main motor subtypes of Parkinson’s disease (PD) include tremor-dominant (TD) and postural instability gait disorder (PIGD), with varying disease course that warrant the development of biomarkers capable of predicting progression according to motor subtype. The PIGD subtype is associated with a poorer prognosis, hence identification of a biomarker associated with PIGD is clinically relevant. Neurofilament light (NfL) chain is a potential biomarker of disease severity in neurological disorders including PD. However, no study has investigated NfL and PD motor subtypes. Here, we aimed to investigate the diagnostic and prognostic utility of plasma NfL for PD motor subtypes in early Parkinson’s disease. Given the higher risk for cognitive and motor decline in PIGD, we hypothesized that plasma NfL is a potential biomarker for PIGD.

Methods

Plasma NfL was measured in 199 participants (149 PD and 50 healthy controls, HC) using an ultrasensitive single molecule array. Patients were classified into TD or PIGD based on MDS-UPDRS components. After 2 years, 115 patients were reassessed. Association between NfL and clinical measures in PIGD and TD at baseline and at 2-year follow-up were analysed.

Results

At baseline, plasma NfL levels were higher in PD than HC (8.8 ± 3.4 vs 16.2 ± 7.6 pg/ml, p < 0.0001), and differentiated PD from HC with a good diagnostic accuracy (AUC = 0.833, p < 0.001). At 2 years, NfL was higher in PIGD than TD (18.4 ± 14.5 vs 12.6 ± 4.4 pg/ml, p = 0.039). Within the PIGD group, higher NfL associated significantly with worse global cognition and UPDRS motor scores at baseline, and was able to predict motor and cognitive decline at a mean follow-up duration of 1.9 years, controlled for age, sex and disease duration.

Conclusions

In this longitudinal study, we demonstrated for the first time the potential utility of plasma NfL as a diagnostic and prognostic biomarker in PIGD even at early stages of PD. These important novel findings will require further confirmation in larger, longitudinal PD cohorts.

This website uses cookies. By continuing to use this website you are acknowledging and agree with our cookie policy.

AgreeLearn more