Publications & Posters

Prognostic Utility Of Neuroinjury Biomarkers In Post Out-of-hospital Cardiac Arrest (OHCA) Patient Management


S.S. Gul, K.W. Huesgen, K.K. Wang, K. Mark, J.A. Tyndall
Medical Hypotheses
DOI: 10.1016/j.mehy.2017.06.016


Despite aggressive intervention, patients who survive an out-of-hospital cardiac arrest (OHCA) generally have very poor prognoses, with nationwide survival rates of approximately 10–20%. Approximately 90% of survivors will have moderate to severe neurological injury ranging from moderate cognitive impairment to brain death. Currently, few early prognostic indicators are considered reliable enough to support patients’ families and clinicians’ in their decisions regarding medical futility. Blood biomarkers of neurological injury after OHCA may be of prognostic value in these cases. When most bodily tissues are oxygen-deprived, cellular metabolism switches from aerobic to anaerobic respiration. Neurons are a notable exception, however, being dependent solely upon aerobic respiration. Thus, after several minutes without circulating oxygen, neurons sustain irreversible damage, and certain measurable biomarkers are released into the circulation. Prior studies have demonstrated value in blood biomarkers in prediction of survival and neurologic impairment after OHCA. We hypothesize that understanding peptide biomarker kinetics in the early return of spontaneous circulation (ROSC) period, especially in the setting of refractory cardiac arrest, may assist clinicians in determining prognosis earlier in acute resuscitation. Specifically, during and after immediate resuscitation and return of ROSC, clinicians and families face a series of important questions regarding patient prognosis, futility of care and allocation of scarce resources such as the early initiation of extracorporeal cardiopulmonary resuscitation (ECPR). The ability to provide early prognostic information in this setting is highly valuable. Currently available, as well as potential biomarkers that could be good candidates in prognostication of neurological outcomes after OHCA or in the setting of refractory cardiac arrest will be reviewed and discussed.