Publications & Posters

Cerebrospinal Fluid Neurogranin In An Inducible Mouse Model Of Neurodegeneration: A Translatable Marker Of Synaptic Degeneration

Neurobiology Of Disease | October 25, 2019

Höglund K, Schussler N, Kvartsberg H, Smailovic U, Brinkmalm G, Liman V, Becker B, Zetterberg H, Cedazo-Minguez A, Janelidze S, Lefevre IA, Eyquem S, Hansson O and Blennow K.

Neurobiol Dis. 2019 Oct 25;134:104645.

doi: 10.1016/j.nbd.2019.104645

This study was peformed using a Simoa® Homebrew assay.


Synapse impairment is thought to be an early event in Alzheimer’s disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2 weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value.