Digital ELISA of HIV P24 capsid protein with sensitivity of nucleic acid amplification tests

INTRODUCTION

Nucleic acid amplification techniques such as PCR have become the mainstay for ultimate sensitivity for detecting low levels of virus, including human immunodeficiency virus (HIV). As a sophisticated technology with relative expensive reagents and instrumentation, adoption of Nucleic Acid Testing (NAT) can be cost inhibited in some settings. We report a simple low cost digital immunoassay for the p24 capsid protein of HIV. Single Molecule Arrays (SiMoA, or digital ELISA) technology enables three logs greater sensitivity than conventional immunoassays. Comparable sensitivity to NAT for detection of acute HIV infection is demonstrated.

METHODOLOGY

SiMoA assay used similar reagents as in conventional ELISA. P24 specific capture antibody was immobilized on paramagnetic bead and detection antibody was biotinylated. Sandwich immunocomplexes were formed by incubating P24 antigen and antibodies together and then labeled with streptavidin conjugated beta-galactosidase. Labeled antigen and antibodies together and then labeled with digital quantification. Red lines and statistics depict least squares fit ($R^2 > 0.999$), from which the estimated LoD was 2.8 fg/mL.

RESULTS

Fig. 1. Dose-response of SiMoA over three logs of spiked p24 in human plasma. Each data point represents the mean of 3 replicates. Insert highlights the low background obtained with digital quantification. The output was imaged with a CCD camera. The whole range of signal was determined using digital counting. Well arrays were imaged with a CCD fluorescent product over time therefore were considered “on” in digital counting. Well arrays were imaged with a CCD camera. The whole range of signal was determined using imaging analysis software to get Average Enzyme per Bead (AEB, the unit of measurement of SiMoA). The output was related to a standard curve and converted to a p24 concentration of the sample. Clinical sensitivity for first detection of HIV infection was evaluated with HIV-1 seroconversion panels, and compared with commercially available NAT methods, immunoassays for p24, and 4th generation HIV combo immunoassays.

Fig. 2. Analytical LoD estimate for SiMoA. A mean LoD of 4.87 fg/mL (SD 2.89) was estimated from each of 11 calibration runs performed on different days. For comparison, LoD ranges for p24-reactive conventional immunoassays are depicted (11,000 to 70,000 fg/mL) along with the LoD of the PROCLEIX system (60 RNA copies/mL).

Fig. 3. Correlation of P24 SiMoA and HIV RNA copy. Comparison of values between SiMoA and a quantitative bDNA NAAT method obtained by assaying four sets of seroconversion samples from HIV infected individuals. Digital immunoassay data represent the mean of three replicates. bDNA data are as reported by the commercial sample vendor (Zeptometrix). Comparison of assay results between the digital immunoassay and a quantitative NAT method from HIV infected sera exhibited a linear correlation $R^2 > 0.99$.

CONCLUSION

The data suggest that the prototype SiMoA digital p24 immunoassay has comparable sensitivity to NAT for acute HIV detection.

REFERENCES

Corresponding author: Dr. Lei Chang
Quanterix Corporation
113 Hartwell Avenue, Lexington, MA 02421, USA
Tel: 1-617-301-9428
lchang@quanterix.com
www.quanterix.com

Table 1. Compare SiMoA with current HIV assays. Assaying serial samples (Seroconversion panel from SeraCare) from 6 HIV-infected individuals, SiMoA detected acute HIV infection as early as NAT methods, and 8-10 days earlier than conventional immunoassays.