back to news

2017 Top 10 Innovations


# 5 Quanterix  |  SR-X Ultra-Sensitive Biomarker Detection System

This August, Lexington, Massachusetts–based Quanterix brought its Simoa biomarker detection technology to the lab bench, launching the compact SR-X system. The platform offers more than 80 different assays to test samples—typically blood or serum, but some assays are also compatible with cerebral spinal fluid or single-cell lysates—for the presence of cytokines, other markers of neurodegeneration or neuroinflammation, and more.

Simoa, the SR-X’s core technology, is also at the heart of the larger HD-1 system (the size of two side-by-side refrigerators), launched in 2014, explains Jeremy Lambert, director of product strategy at Quanterix. Because Simoa uses more magnetic beads relative to the proteins they’re targeting, each bead captures only a single protein. Those protein-carrying particles are then pelleted, washed, combined with an antibody detector, and flowed across an array of 200,000 microchambers that can house only a single particle; there, the antibody detector interacts with a fluorogenic reporter molecule. “The ability to count individual beads provides the very high sensitivity that enables detection of very low concentrations of proteins,” Lambert says. Researchers can look for up to six different target proteins in a single assay without compromising sensitivity, he adds.

The SR-X uses the same technology, but is much smaller. The size of a large microwave, it fits on a standard benchtop. And the SR-X’s assay prep—including the incubation of samples with capture beads, for example, and the washing step—are performed by the researcher before the samples are fed into the machine. “That gives a lot of flexibility to the end user, where they can vary the conditions of an assay,” Lambert says. These steps can be performed using conventional lab devices that are part of a standard ELISA workflow, he notes.

CRUICKSHANK-QUINN: “This benchtop instrument is able to detect protein and nucleic acid biomarkers directly from blood and tissue without the need for sample extraction and amplification steps.”

See the entire article on